

Benchmarking

- Benchmarking Basics
- California Green Buildings Action Plan
- Past Benchmarking Work
 - □ EPA Energy Star
 - □ Cal-Arch
- Features of Future Benchmarking Tools
- Next Steps / DGS Opportunities

Benchmarking Basics

- Definition: Process of comparison against standard or average
 - □ Determine how well a building is performing
 - □ Set targets for improved performance
 - □ Facilitate assessment of property value
 - Gain recognition
- What influences energy use?
 - □ Type (Office, Restaurant,..)
 - □ Size, hours of use, occupancy
 - Climate, heating and cooling
 - □ Vintage, structural characteristics, Shading/Orientation
 - □ Buildings systems, HVAC, shell, lighting
 - □ Level of service, misc. loads
- Why regional tools?
 - □ Climate is main source of variation, influences design, end-uses
 - Varying codes, incentives

Benchmarking and the Green Building Action Plan

- Existing State buildings > 50kft² shall meet LEED-EB (including Energy Star > 75 or equivalent) by 2015
- State buildings will reduce energy by 20% by 2015 or achieve CEC minimum efficiency benchmark
- CEC shall propose by July 2005 a simple efficiency benchmarking system coordinated with Energy Star
- 4. CEC shall prepare a plan to accomplish benchmarking for all buildings including tenants, buyers, and lenders

EPA Energy Star Basics

- Energy Performance Rating based on regression model from DOE/EIA CBECS.
- Energy Star Label: Plaque awarded to buildings representing top 25% of their building category
 - K-12 Schools, Offices, Hotels, Medical Offices, Supermarkets & Warehouses

Regression Equation

Source (kBtu/year) = C₀ + C₁ Ln(Area) + C₂ CDD + C₃ Hours+ C₄ OccDens + C₅ PCDens

Source (kBtu/year) = -42.215 +14.967*Ln(Area) + 0.012*CDD + 0.517*Hours +

16.766*OccDens + 9.759*PCDens

Predicted Source EUI = 250.3 kBtu/ft²-yr Mean Source EUI = 201.7 kBtu/ft²-yr

Adjustment Factor = (250.3/201.7)

= 1.24

Past Benchmarking Work

- Pre-EnergyStar energy data base research in 1980s
- EPA collaboration during development of Energy Star
- Simultaneous development of Arch and Cal-Arch
- Evaluated Scores of from 1990s Commercial End-Use Survey (CEUS)
 - □ Influenced Energy Star Algorithms
 - □ Re-evaluated Energy Star Ratings with new algorithm
- Plan for new benchmarking tool using CEUS
 - 2002 CEUS: 2,800 commercial audits with DOE-2 simulations

Simple on-line tool of 1990s CEUS data

Initial screen for Retro-Cx Program, use by PG&E

Only public source of **CEUS** data

Back

٧.

Whole Building Energy Use

Your whole building EUI is 47.7963 kBtu/ft²-yr, which is higher than 37 % of comparison buildings shown.

EUI Su	EUI Summary			
%-tile	kBtu/ft ² -yr			
25	34			
50	58			
75	90			
Your EUI	47.7963			

more information

LEGEND

Bar Color	Data Source	For further information:
	PGE_CEUS	PG&E CEUS
	SCE95L	1995 SCE Low-Res CEUS
	SCE92L	1992 SCE Low-Res CEUS
	SCE92H	1992 SCE High-Res CEUS

Description of Comparison Buildings

Description of Comparison Dunmigs					
	For this field:	You entered:	Comparison Buildings		
	Building Type	Office/Professional	Office/Professional		
	Zip Code	Not entered	All climate zones are shown		
	Floor Area	50,000 ft ²			
	Filter by area?	No	Buildings of all sizes are shown		

Site/Source Site Results are displayed as site energy use

Whole Bldg Electric Gas

267 423 210

Continue to Interpret Results page for additional information about these results.

California Buildings Achieve High Scores (n = 109 office buildings)

- Analysis of 109 Offices from 1990s CEUS with New Energy Star Rating Algorithm (43 % >75)
- No Correlation between Energy Star score and % Better than Code

Features of Future Benchmarking Tools

- Review presence of efficiency features, consider controls, operations, and misc. equipment
- Link to code Title 24 as baseline for efficiency measures
- Move toward end-use evaluation
- Link to recommendations for strategies to reduce energy, both retrofits and retro-commissioning
- UK Benchmarking Approach (for European Union)
 - Variables Identify variables that drive differences in EUIs
 - □ **Levels of Practice** For each variable identify typical, good, excellent
 - □ Models Develop models using variables to explain energy use
 - □ Use Models to Adjust Benchmark compared building with benchmark
 - □ **Reducing Energy Use** After developing benchmark methods on how buildings are used, add detail about opportunities for improvement

Analysis of Energy Use and Service Provision

Each box can be considered as a benchmark

Ventilation Energy in an Air-Conditioned Office

Each box can be considered as a benchmark

Air handling benchmarks:

	•	GOOD:		TYPICAL:	
		Type3	Type4	Type3	Type4
		Air cond	Prestige	Air cond	Prestige
		Standard	HQ	Standard	HQ
E	(l/s)/m ²	4	4	4	4
F	W/(I/s)	2	2	3	3
С	W/m ²	8	8	12	12
D	hrs/year	2750	3000	3500	3700
В	kWh/m ²	22	24	42	44

Lighting Energy in an Office

Next Steps

- LBNL Develop Plan for Future Benchmarking Tool
 - □ Investigate applicability of advanced methods to California
 - □ Review CEUS, evaluate use of Title 24 as benchmark in CEUS
 - □ Develop initial distributions of EUIs linked to standards of practice
- DGS Opportunities
 - Assemble building stock data
 - Size, location, systems, equipment, end-uses, occupancy, etc.
 - Energy use, peak demand
 - Controls, recent retrofits and retro-commissioning
 - □ Apply current and future benchmarking methods
 - Prioritize energy savings opportunities